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Abstract. A nonperturbative method for calculating persistent currents in molecules and nanoscopic
quantum rings is presented. Starting from the extended Hubbard model on a ring threaded by an
Aharonov-Bohm flux, a feedback term through which the current can generate magnetic flux is added.
Another extension of the Hamiltonian describes the energy stored in the internally generated field. This
model is evaluated using exact diagonalization and an iterative scheme to find the minima of the free
energy with respect to the current. The magnetic properties due to electron delocalization of conjugated
hydrocarbons like benzene [magnetic anisotropy, magnetic susceptibility exaltation, nucleus-independent
chemical shift (NICS)] — that have become important criteria for aromaticity — can be examined us-
ing this model. A possible novel mechanism for a permanent orbital magnetic moment in quantum rings
analogous to the one in π-SQUIDs is found in the framework of the proposed model. The quantum rings
must satisfy two conditions to exhibit this kind of permanent orbital magnetic moment: a negative Drude
weight and an inductivity above the critical level.

PACS. 31.15.Ct Semi-empirical and empirical calculations – 33.15.Kr Electric and magnetic moments –
75.75.+a Magnetic properties of nanostructures

1 Introduction

1.1 Aromaticity and ring currents

Organic semiconductors have gained a lot of attention
during recent years. Organic thin film transistors with
the highest mobilities of electrons can be built from
pentacene [1], an aromatic molecule that consists of five
benzene rings. For the development of molecular electron-
ics [2], molecules with delocalized π-systems seem most
promising [3]. The objective of this article is to investi-
gate the magnetic properties of these aromatic molecules,
specifically those properties originating from ring currents.

There is no unique definition of the property “aro-
maticity”. Several physical, geometrical and chemical cri-
teria (e.g., magnetic properties, equality of bond lengths,
a particularly pleasant smell, a predisposition to nitra-
tion and sulphonation and a strong delocalization of spin)
have been used to classify molecules as aromatic at differ-
ent times. Therefore, there has been much confusion over
the precise meaning and definition. For a review on aro-
maticity and its relation to ring currents see the recent
articles of Lazzeretti [4], Gomes, and Mallion [5].

The ring-current model was proposed in 1936 by
Pauling [6] to explain the experimental fact that the mag-
netic “susceptibility ellipsoids of the aromatic molecules

a e-mail: Peter.vanDongen@uni-mainz.de

are found to be approximately prolate ellipsoids of rev-
olution, with the long axis normal to the plane of
the molecule”. In 1961, the effect of the ring current on
the chemical shift of proton resonance spectra [7] led to
the suggestion that this effect should be a criterion of aro-
maticity [8]. The magnetic field that the ring current in an
aromatic ring generates enhances the magnetic field at the
proton locations outside the ring and diminishes the field
inside the ring. These substances are called “diatropic”,
in contrast to paratropic rings that enhance the magnetic
field in their interior [9]. There is a clear correlation be-
tween diatropic and aromatic substances on the one hand
and paratropic and antiaromatic substances on the other.

Today there is overwhelming evidence that aromaticity
can be uniquely defined through magnetic properties. For
example, the magnetic anisotropy [10] and the magnetic
susceptibility exaltation [11,12] (defined as the difference
between the magnetic susceptibility for the observed com-
pound and the value estimated for the hypothetical system
without cyclic electron delocalization) are used as a cri-
terion along with the nucleus-independent chemical shift
(NICS) [13] that has been proposed as the major criterion
for aromaticity [14]. However, the NICS is a theoretical
criterion that is by definition not observable.

There are many ab-initio methods for calculating
chemical shifts for NMR spectroscopy; for a good review
see, e.g., reference [15]. All of these methods are linear ap-
proximations for small fields. Of course, a linear response
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current cannot describe the system’s behavior in arbitrar-
ily high external magnetic fields. The response current
should show a periodicity with respect to the number of
flux quanta threading the ring [16]. This periodicity will be
destroyed due to Zeeman splitting of the electronic ener-
gies and spin flipping. Therefore, a highly nonlinear depen-
dence of the current with respect to large enough external
fields is expected. To force a flux quantum inside a ben-
zene molecule — a hexagon with a side length of 140 pm
— one would need an extremely high magnetic field of
8 × 104 T. However, we do not intend to describe such
high values of magnetic field within the approximation
scheme discussed in this paper. The Zeeman interaction
of the electron spins with the magnetic field is neglected,
which is rigorously correct for a quantum ring threaded by
a flux tube but is an approximation for quantum rings in
homogeneous magnetic fields. In this paper we are primar-
ily interested in the orbital magnetic effects of quantum
rings.

1.2 The connection to SQUIDs

The comparison between superconductors and aromatic
molecules has been made very frequently in the literature.
F. London was the first to compare the diamagnetism of
aromatic molecules to the diamagnetism of superconduc-
tors [17]. Haddon called for a combined effort of chemists
and physicists to explain the precise similarities between
superconducting currents and the persistent currents in
aromatic molecules [18].

There is an interesting similarity between the phase co-
herence of the superconducting wave function in a ring and
the wave function of the π-electrons in aromatic molecules.
The reaction of the superconducting wave function in a
superconducting ring with a Josephson junction and the
wave function of the π-electrons in aromatic molecules to
a magnetic flux through the ring is essentially the same.
While the superconducting wave function accumulates a
phase

φ = 2π
2e
h
Φ (1)

due to the flux Φ it encloses, the wave function of the
electrons in an aromatic molecule gathers a phase shift of

φ = 2π
e

h
Φ. (2)

Another similarity between superconducting rings with a
junction and molecules with delocalized π-systems is the
shape of the free energy with respect to the external mag-
netic flux. Whereas superconducting rings with a conven-
tional Josephson junction and aromatic molecules possess
a minimum of the free energy at zero external flux, super-
conducting rings with a π-junction [19,20] and antiaro-
matic molecules possess a maximum of the free energy
at zero external flux. Going through a π-junction, the
supercurrent accumulates a phase shift of π. In d-wave
superconductors, a π-junction can be realized by joining
differently oriented grain boundaries.

1.3 The Hubbard model and its extensions

The electrons in (anti)aromatic hydrocarbons move
through a delocalized π-system. However, due to the
Coulomb interaction of the positively charged cores of
the carbon atoms, the probability of finding an electron is
peaked at the sites of the carbon atoms. This leads to an
effective tight-binding model. In combination with a local
interaction, this leads to the semi-empirical descendants
of the Hubbard model that are used in this paper.

According to Hückel, a planar, monocyclic, completely
conjugated system is aromatic if the ring contains 4n+ 2
delocalized π-electrons [21]. Antiaromatic rings contain
4n π-electrons. This effect occurs in the Hubbard model,
where half-filled finite rings with 4n lattice sites possess a
negative Drude weight, leading to paramagnetic ring cur-
rents, and half-filled rings with 4n + 2 lattice sites are
diamagnetic [22].

We present a nonperturbative method for calculating
ring currents in the framework of strongly correlated elec-
tronic systems. For reasons of simplicity, we neglect the
effect of the interaction of the spins of the electrons with
the magnetic field itself (anomalous Zeeman effect) and
only consider an Aharonov-Bohm type vector potential
threading the ring. The vector potential just generates a
phase shift of the wave function.

We extend the kinetic energy part of the model to in-
clude a feedback of the ring current to the magnetic flux
in Section 2.1. The total magnetic flux through the ring
is thus evaluated as the sum of the external flux and the
internal flux generated by the ring current. The strength
of the feedback can be adjusted by the inductivity of the
ring. In Section 2.2 an iterative solution scheme for the
model is developed. This scheme minimizes the free en-
ergy with respect to the current in the ring (Sect. 2.3).
In Section 2.4 we determine the critical inductivity above
which a system can in principle have a permanent orbital
magnetic moment. The theory of Section 2 is applied to
physical systems in Section 3. A test of the developed
model is the application to benzene in Section 3.2. The
magnetic susceptibility due to ring currents is evaluated.
Another example shows a possible new mechanism for the
occurrence of a permanent orbital magnetic moment in
Section 3.3.

2 Method

2.1 The model Hamiltonian

We use semi-empirical one-band models with only nearest-
neighbor hybridization t to describe the π-electrons of
cyclic hydrocarbons, for example, the Hubbard model,
the extended Hubbard model, or the Pariser-Parr-Pople
(PPP) model. These models are described by the
Hamiltonian

H = −t
∑

lσ

(
c†l+1,σ cl,σ + c†l,σ cl+1,σ

)

+ U
∑

l

nl↑ nl↓ +
1
2

∑

l �=m

Vlm nl nm, (3)
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where c†lσ creates an electron with spin σ on site l,
nlσ = c†lσ clσ, and nl = nl↑ + nl↓. The sums are taken over
all N sites, and periodic boundary conditions are used.
The Coulomb interaction between the electrons is modeled
by an on-site repulsion U and by a long-range repulsion
Vlm (which is zero for the Hubbard model). The extended
Hubbard model also includes a nearest-neighbor repulsion
(Vlm �= 0 for |l−m| = 1). In the PPP model, the Coulomb
repulsion can be parameterized by the Ohno [23] potential
with a dielectric constant εr > 1 [24]:

Vlm =
U

εr
√

1 + ζr2lm
, (4)

where we choose

ζ =
(

U

1.4397 nm eV

)2

, (5)

in order that Vlm → e2/4πε0εrrlm as rlm → ∞ [25]. The
dielectric constant originates from the screening of the
π-electrons by the σ-electrons and from screening effects
from the environment.

In these models, the twist of the phase in the wave
function in the presence of an Aharonov-Bohm flux can
be partitioned into phase shifts for every hopping process.
Therefore, the kinetic energy part of the Hamiltonian is
modified with the usual Peierls phase factor exp( 2πi

Nφ0
φext),

where φ0 = h/|e| is the flux quantum. In natural units
(e = c = � = kB = 1) the unit of energy is 1 eV and
the flux quantum equals 2π. The Hamiltonian presented
in equation (10) below is the Hamiltonian needed to calcu-
late the Drude weight D, which is identical to the dc con-
ductivity of an electronic system in the thermodynamic
limit. However, for small rings, the quantum nature of
the system could lead to equilibrium persistent currents,
leading the concept of conductivity ad absurdum. Persis-
tent currents may occur in systems with two minima in
the ground-state energy E0, with respect to the external
flux. The curvature of the ground-state energy between
those minima is negative, leading to a negative Drude
weight [22,26].

If the system is given the opportunity to generate an
internal flux itself, by letting a persistent current

j = − ∂H
∂φext

(6)

flow, the system falls into the minimum of the ground-
state energy with respect to the internally generated flux

φint = Lj. (7)

In order to be able to formulate a simple model Hamil-
tonian for ring currents, we assume the inductivity L —
which depends only upon the geometry of the system — to
be a valid concept down to the scale of organic molecules.
This approximation corresponds to the neglect of quantum
fluctuations in the calculation of the internally generated
flux. The inductivity is a fit parameter in our calculations;

it can only be roughly estimated for molecules. The inter-
nal flux leads to an additional phase shift represented by
the unitary phase-shift operator

P ≡ e−
i

N L j . (8)

The current operator appears in the exponential because
the eigenstates carry different quantities of current, lead-
ing to a different phase shift for different eigenstates.

The energy that is stored in the internal magnetic field
of an electronic quantum ring, e.g., a cyclic hydrocarbon,

L

2
j 2, (9)

must be added to the model under consideration. This
term boosts the eigenenergies of the current carrying
eigenstates.

The complete Hamiltonian is now given by:

H = −t
∑

lσ

[
e

i
N (φext+L j ) c†l+1,σ cl,σ

+ c†l,σ cl+1,σ e
− i

N (φext+L j)
]

+ U
∑

l

nl↑ nl↓ + 1
2

∑

l �=m

Vlm nl nm + 1
2L j 2 . (10)

This Hamiltonian is motivated by the free energy of su-
perconducting rings with a conventional or a π-junction
given in reference [19]. The approach of reference [19] is
based on earlier work by Silver and Zimmermann (1967)
and by Bulaevskii et al. (1977) [27,28]. We reemphasize
that our model (10) is semi-phenomenological (i.e., not
fully microscopic) in nature, since it is based on the con-
cept of an inductivity, see equation (7). Note that the
Hamiltonian depends explicitly on φext and on the cur-
rent operator: H = H(φext, j). Accordingly, we will in the
following calculate partial derivatives of H with respect to
φext or j, while keeping the other variable fixed. Once the
Hamiltonian is known, the free energy of the ring follows
as F = −β−1 ln tr(e−βH).

Let us simplify the notation by introducing operators
for the sum of leftward hopping and the sum of rightward
hopping terms as well as for the interaction:

C ≡ −te− i
N φext

∑

lσ

c†l,σ cl+1,σ

= −te− i
N φext

∑

kσ

eik nkσ,

C † = −te i
N φext

∑

lσ

c†l+1,σ cl,σ,

W ≡ U
∑

l

nl↑ nl↓ + 1
2

∑

l �=m

Vlm nl nm . (11)

The kinetic energy can then be expressed as

K = C P + P† C † (12)

and the current operator is

j = − ∂H
∂φext

=
i

N

(
C P −P† C †

)
, (13)
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so that the entire Hamiltonian can be written as H =
K + W + 1

2Lj
2. The kinetic energy and the current are

obviously Hermitian operators. Although it is difficult
to prove rigorously, it is physically obvious that the ki-
netic energy and the current are diagonal in momen-
tum space. Consequently, any two operators from the set
{C ,C †,P ,P†, j ,K} commute with each other.

2.2 Iterative scheme

The current operator is defined implicitly to be the current
operator that minimizes the free energy resulting from the
model Hamiltonian (10) for fixed φext. The metastable
current states are found as the local minima of the free
energy. We will derive a solution scheme of the model in
this section. The current operator will be determined iter-
atively. We first state the iterative scheme and afterwards
prove that it minimizes the free energy with respect to the
current operator.

Before starting the iteration (n = 1), we choose the
current to be

j (0) = 0. (14)

The iterative scheme is the search for a fixed point of the
current operator:

P(n) = e−
i
N L j (n−1)

j (n) = − ∂H
∂φext

=
i

N

(
C P (n) −P†

(n) C †
)
. (15)

The corresponding fixed-point equation is

j = G(j ) ≡ i

N

[
C P(j ) − P†(j )C †

]
. (16)

Thus, the current operator is determined without lineariz-
ing the Hamiltonian with respect to the external field. In
momentum space, we may think of the above equations
as dim(H) uncoupled equations for the eigenvalues of the
operators instead of the operators themselves, because of
diagonality.

In the following, we show that the free energy is min-
imized with respect to the current operator by the iter-
ative scheme. In fact, every single energy eigenvalue is
minimized. In momentum space, the alternation of the
eigenvalues due to a change in the current operator is
determined by the diagonal elements of the matrix rep-
resenting the Hamiltonian. The off-diagonal matrix ele-
ments correspond to the interaction of the electrons and
are independent of the current operator.

2.3 Minimization of the free energy

The iterative solution scheme of the last subsection would
be useless, if it were to minimize the diagonal elements
of the Hamiltonian matrix in momentum space. Here, we
will show that the current operator, minimizing the diago-
nal elements of the Hamiltonian in momentum space, also

minimizes the eigenvalues of the Hamiltonian and there-
fore the free energy, provided the Hamiltonian is nonde-
generate.

Assuming the minimal diagonal elements of the Hamil-
tonian matrix in momentum space were found, every
other possible Hamiltonian matrix could be described by
the sum of the minimal Hamiltonian matrix and a pos-
itive semidefinite matrix. Any deviation from the min-
imal Hamiltonian matrix would lead to an increase of
some eigenvalues while others remain constant. In Sec-
tion 2.4 we develop a criterion under which the iterative
scheme converges and minimizes the diagonal elements of
the Hamiltonian in momentum space.

In the notation defined above, the Hamiltonian can be
written as:

H = C P + P† C † +
1
2
L j 2 + W . (17)

The first three terms are diagonal in momentum space
with diagonal entries composed of the eigenvalues of
the hopping, phase-shift, and current operator (Cκ, Pκ,
jκ). Let the eigenstates of the noninteracting many-
particle system in momentum space be |pκ〉 with κ ∈
{1, . . . , dimH}. The derivative

∂Hκξ

∂ j ζ
= δκξδξζL

{
i

N
[(Pκ)∗(C κ)∗ − C κ Pκ] + jκ

}

(18)
of the Hamiltonian with respect to the current eigenvalues
jζ must vanish:

∂ Hκξ

∂ j ζ
= 0, ∀κ, ξ, ζ ∈ {1, . . . ,dimH}. (19)

This condition is necessary for the elements of the Hamil-
tonian matrix in this representation to have minima and
is automatically fulfilled if the iterative scheme converges,
see equations (15) and (16). It is sufficient for the exis-
tence of minima that the second derivatives of Hκξ with
respect to the current eigenvalues are positive:

∂2 Hκξ

∂(j ζ)2
= δκξδξζL

{
1 − L

N2
[C κ Pκ +(Pκ)∗(C κ)∗]

}

> 0, ∀κ = ξ = ζ ∈ {1, . . . ,dimH}.
(20)

Since the off-diagonal elements of the Hamiltonian are in-
dependent of the current eigenvalues, the second deriva-
tive (20) is diagonal in the indices (κξ).

We assume that the current j (∞) minimizes the diag-
onal elements of the Hamiltonian. Any deflection of the
current from this position corresponds to a small pertur-
bation of the Hamiltonian with a positive semidefinite ma-
trix M . The Hamiltonians from previous iterations in gen-
eral exhibit larger diagonal elements than the converged
Hamiltonian H(∞) in momentum space:

H(n) = C P (n) + P†
(n) C † +

L

2
j 2
(n) + W (21)

H(n) −H(∞) = M = diag
(
d1, . . . , ddimH)

,

∀1 ≤ l ≤ dimH : dl ≥ 0. (22)
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Adding a diagonal matrix to a normal matrix changes the
eigenvalues within well-defined boundaries. So for every
eigenvalue Eκ

(∞) of H(∞) there is an eigenvalue Eκ
(n) of

H(n) with

|Eκ
(∞) − Eκ

(n)| ≤ ‖M‖ = max
l

|dl|. (23)

Therefore, the eigenvalues of the Hamiltonian lie within
disks around the eigenvalues of the nth approximation to
the Hamiltonian, if the iterative scheme converges. For
the special case of the Hermitian Hamiltonian and the
real diagonal perturbation M , these disks are simple in-
tervals. Furthermore, if the Hamiltonian is nondegenerate
(so that the eigenvectors and eigenvalues are differentiable
functions with respect to a small perturbation), it can be
proven that the energy eigenvalues are minimal at the cur-
rent j (∞) because a perturbation with a positive semidef-
inite matrix M to a Hermitian matrix H(∞) makes the
eigenvalues larger [29]. Consequently we obtain that

Eκ
(∞) ≡ Eκ(j (∞)) ≤ Eκ(j ), (24)

for all κ and for all possible current operators in some
finite neighborhood of j (∞). We can now partition the
current space into small finite neighborhoods and extend
the above calculation to a larger neighborhood of j (∞). If
the minimum of the diagonal matrix elements is global,
the minimum of the eigenvalues is also global. The above
relation (24) is only strictly valid if the Hamiltonian is
nondegenerate near j (∞). However, if we look at the max-
imally degenerate case of zero interaction, the eigenval-
ues of the Hamiltonian are identical to the diagonal ma-
trix elements. Equation (24) also holds trivially in that
case. Therefore, there is strong evidence that the following
statement is always true: the minima of the eigenenergies
of the system with respect to the current are the eigen-
values of the Hamiltonian whose diagonal matrix elements
are minimized in momentum space. The minimal diagonal
matrix elements are found if the two criteria (19) and (20)
are matched.

2.4 The critical inductivity

The convergence of the iterative scheme is investigated
here. Below a certain bound of the inductivity, the criti-
cal inductivity, the iterative solution scheme converges to
one fixed point of the current operator. Above the critical
inductivity, more than one fixed point for the current op-
erator can be found. The critical inductivity is therefore a
very important point at which the physical characteristics
of quantum rings change dramatically.

The condition (19) is automatically fulfilled if the it-
erative scheme (15) converges. A criterion for the conver-
gence of the sequence of currents is the Banach fixed-point
theorem. We apply it to determine the parameter range
for which there is only one stable current state for each
external flux.

The operator G in the fixed-point equation (16) fulfills
a Lipschitz condition:

‖G(j2) − G(j1)‖ ≤ g ‖j2 − j1‖. (25)

It is called a contraction if 0 ≤ g < 1. The operator G is
diagonal and Hermitian in momentum space. Therefore it
is considered as a simple continuously differentiable func-
tion G: R

dimH −→ R
dimH. We derive an estimation for

the smallest possible Lipschitz constant of G in the fol-
lowing. Let ∂ G

∂ j be the Jacobian matrix of the operator
G:

(
∂G
∂ j

)

κξ

≡ ∂Gκ

∂ j ξ

= δκξ
L

N2
[C κ Pκ +(Pκ)∗(Cκ)∗] , (26)

with

‖G(j +∆j ) − G(j )‖ =
∣∣∣∣

∣∣∣∣
∫ 1

0

∂G
∂ j

(j +t∆j ) ·∆j dt
∣∣∣∣

∣∣∣∣

≤
∫ 1

0

∣∣∣∣

∣∣∣∣
∂G
∂ j

(j +t∆j )
∣∣∣∣

∣∣∣∣ ‖∆j‖dt

≤
(

sup
0≤t≤1

∣∣∣∣

∣∣∣∣
∂G
∂ j

(j +t∆j )
∣∣∣∣

∣∣∣∣

)
‖∆j‖.

(27)

The smallest possible global Lipschitz constant can be es-
timated as:

g = sup ‖∂G
∂ j

‖

=
L

N2
sup ‖C P(j ) + P†(j )C †‖

≤ L

N2

(
‖C‖ + ‖C †‖

)

=
2L
N2

|λmax(C )|. (28)

The Hermiticity of j , unitarity of P , normality of C , and
the triangle inequality have been used. Here λmax(C ) de-
notes the complex eigenvalue of the operator C with the
largest absolute value. It follows that G is a contraction
(g < 1) if the condition

L < Lc =
N2

2|λmax(C )| (29)

is satisfied. The hopping operator is diagonal in momen-
tum space. Thus we obtain

Lc =
N2

2tmaxκ |
∑

kσ e
ik 〈pκ| nkσ |pκ〉 | , (30)

where the maximum is taken over all normalized configu-
rations of the electrons in momentum space |pκ〉.

The sufficient criterion (20) is also fulfilled. The supre-
mum g of the norm of the Jacobian matrix of G is smaller
than one, therefore the entries in the Jacobian matrix are
also smaller than one. In terms of the Jacobian matrix the
criterion (20) reads

∂2 Hκξ

∂(j ζ)2
= δκξδξζ

{
1 −

(
∂G

∂j

)

κκ

}

> 0, ∀κ = ξ = ζ ∈ {1, . . . , dimH}. (31)
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Fig. 1. Free energy, current and the difference of the norm
of successive current operators on a logarithmic scale were ob-
tained for the extended Hubbard model on 4 sites with 2 up
and 2 down electrons with t = 1 eV, U = 4 eV, V = 3 eV,
L = 2.5/eV, φext = 1.5 at T = 0.01 eV. The critical inductivity
for this model is Lc = 2

√
2/eV ≈ 2.8284/eV.

The physical essence of this result is that for inductivities
smaller than the critical inductivity Lc, the current is a
unique, single valued function of the external flux.

Furthermore, the expectation value of the current is
an antisymmetric function of the external flux. The cur-
rent operator is antisymmetric in φext. This can be veri-
fied by looking at the eigenvalues of the current operator.
The eigenvalues are proportional to the imaginary part of
eiφext/N , which is clearly antisymmetric. The density ma-
trix of the problem is symmetric because the external flux
enters the Hamiltonian only through the kinetic energy
operator and the square of the current operator. Both are
symmetric in φext. Therefore, there is no persistent cur-
rent for zero external flux [〈j (φext)〉 = 0 for φext = 0]
and for inductivities L ≤ Lc. States with a spontaneous
orbital magnetic moment without external magnetic field
are only possible for inductivities L > Lc.

The convergence of the scheme can be tested numer-
ically by the operator norm of the difference of current
operators of two successive iteration steps:

‖∆ j (n)‖ ≡ ‖j (n) − j (n−1)‖ n→∞−→ 0. (32)

The iterative procedure may be considered to have reached
convergence once the spectral norm ‖∆ j (n)‖ drops below
a certain bound. The convergence for very small rings be-
comes exponential in n after sufficiently many steps (see
Fig. 1). The expectation value of the free energy is seen
to be lowered in each iteration step while the expectation
value of the current reaches its equilibrium value.

2.5 Modification for large inductivities

Above the critical inductivity, the iterative scheme does
not converge in general. This can occur for certain val-
ues of the external flux. In this case, there is more
than one stable current state. Since the current operator
and the phase-shift operator in equation (15) are diag-
onal, it is possible to reduce the scheme to dimH one-
dimensional searches for fixed points. For fixed points of
one-dimensional functions, Hillam’s theorem [30] provides
an iterative scheme to find a fixed point for every single
eigenvalue of the current operator. Let gκ be the Lipschitz
constant for the κth eigenvalue of the current operator
[analog to Eq. (28)]:

gκ =
2L|Cκ |
N2

. (33)

Hillam’s theorem states that the iterative scheme

Pκ
(n) = e−

i
N L jκ

(n−1)

j κ
(n) = − 2

N
Im(Cκ Pκ

(n))

j κ
(n) = λκ jκ

(n) +(1 − λκ) j κ
(n−1)

∆ j κ
(n) =

1
λκ

(
j κ
(n) − jκ

(n−1)

)
(34)

will converge when λκ = 1
gκ+1 . The iteration starts with

n = 1. The current eigenvalues {jκ
(0)} can be set in order

to find different branches of the solution. A criterion for
the convergence of the scheme is maxκ

(
∆ jκ

(n)

)
< ε. Af-

ter the convergence criterion is satisfied, it still has to be
verified that the current minimizes the energy eigenvalues.
Consequently, the criterion

min
κ

∣∣∣∣1 − 2L
N2

Re(C κ Pκ
(∞))]

∣∣∣∣ > 0 (35)

needs to be checked, in analogy to equation (20).

2.6 Asymptotic expansion for large inductivities,
approximate solutions

We now show that asymptotically exact results for the
eigenvalues of the current operator can be obtained in the
limit of large inductivities (L → ∞). These asymptotic
results can also be extended to yield approximate expres-
sions for the eigenvalues of the current operator, valid both
for L→ ∞ and (at finite L) if the current is small.

From equations (11) and (13) we deduce that the im-
plicit equations, determining the eigenvalues of the current
operator, are given by

jκ =
2tñ
N

sin
[
K − 1

N
(Ljκ + φext)

]
. (36)

Here ñ and K are defined by the equation

eiK ñ =
∑

kσ

eik 〈pκ| nkσ |pκ〉 , (37)
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where ñ is a positive real number. The kets |pκ〉 denote
the eigenstates of the noninteracting Hamiltonian in mo-
mentum space. We define Jκ = Ljκ so that

Jκ

L
=

2tñ
N

sin
[
K − 1

N
(Jκ + φext)

]
. (38)

The reason for the introduction of Jκ (rather than jκ) is
that Jκ remains finite in the limit L → ∞. Expanding
the solution of (38) in a power series in L−1, we find that
there are, in fact, infinitely many solutions for the lowest
order coefficient Jκ

0 in the expansion, which we label by
an index m:

Jκ,m
0 = N (K + 2mπ) − φext, m ∈ 1

2
Z. (39)

From equations (10–12) we see that the energy eigenvalues
of the non-interacting model (U = Vlm = 0) have the form

Eκ = −2tñ cos
[
K − 1

N
(Jκ,m + φext)

]
+

1
2

(Jκ,m)2

L
,

(40)
and it is evident from equation (39) that Jκ,m

0 -values with
m ∈ Z correspond to minima of the kinetic energy eigen-
values, whereas Jκ,m

0 -values with m − 1
2 ∈ Z correspond

to maxima. We focus on solutions with m ∈ Z. Starting
from (40), it is easy to expand the rescaled current eigen-
values Jκ,m about the L→ ∞ limit Jκ,m

0 . To second order
in L−1 one finds the following remarkably simple result:

Jκ,m/Jκ,m
0 =

2∑

n=0

(
− N2

2tLñ

)n

+ O
(

1
L3

)
(L→ ∞).

(41)
This asymptotically exact result shows that, apart from
correction terms of order L−3, the Jκ,m are proportional
to Jκ,m

0 and, hence, are linear functions of the external
flux φext.

The form of equation (41) suggests another asymptotic
expansion, namely for small Jκ,m

0 , i.e., for φext → N(K +
2mπ) ≡ φκ,m

ext . The inductivity L is kept finite in this limit.
The hope is to be able to complete the geometric series,
the first three terms of which appear in the right hand
side of equation (41). Indeed, one finds from (38):

Jκ,m/Jκ,m
0 =

2tLñ
N2 + 2tLñ

+ O [
(Jκ,m

0 )2
]

(φext → φκ,m
ext ).

(42)
An extension of (41) and (42), valid for both L→ ∞ and
φext → φκ,m

ext , is

Jκ,m =
2tLñ

N2 + 2tLñ
Jκ,m

0 − N3(Jκ,m
0 )3

48t3L3ñ3
+ O

[
(Jκ,m

0 )3

L4

]
.

For the current eigenvalues jκ,m = Jκ,m/L, this implies:

jκ,m =
2tñ

N2 + 2tLñ
[φκ,m

ext − φext]−N
3 [φκ,m

ext − φext]
3

48t3L4ñ3
+. . . ,

(43)
where the correction terms are of order L−5 for large
inductivities (L → ∞) and of order [φκ,m

ext − φext]
3 for

jκ,−1

jκ,0

jκ,1

2πΝ

φ

j

2tn/N~

−2tn/N~

Fig. 2. Sketch of the asymptotic expansion (solid lines) and
the real solution (dashed curves).

φext → φκ,m
ext . The solutions jκ,m as functions of φext are

sketched in Figure 2, where the leading linear behavior
in (45) is indicated by solid lines and the actual solution
by the dashed curves.

Equation (36) shows that the current eigenvalues are
bounded from above and below by |jκ| ≤ 2t

N . We thus ob-
tain the following interpretation of Figure 2: the closer the
solutions lie to the line j = 0, the lower is their energy, be-
cause of the 1

2L(jκ)2 contribution. The real solutions jump
from one m-level jκ,m to the next jκ,m±1 or interpolate
between them continuously at low inductivities.

The number of solutions Ns for jκ(φext) at a given
value of φext can be approximated as the number of lines
jκ,m intersecting the line φext = 0 in the interval j ∈
[−2t/N, 2t/N ] (circles in Fig. 2), which can be evaluated
to be roughly

Ns =
1
2π

(
2 −K +

4tLñ
N2

)
+ 1

L→∞≈ 2tLñ
πN2

. (44)

We can draw the following conclusion from the above cal-
culations: the ring current is a finite-size effect that de-
creases with the reciprocal system size for all L > 0. The
possibility to find several stable current states decreases
proportionally to 1/N2 while growing linearly with the in-
ductivity. The value of one particular solution jκ,m goes
to zero like 1/L for high inductivities.

3 Numerical examination and physical
consequences

In this section, we apply the proposed method to physical
systems. Realistic parameters for cyclic hydrocarbon, es-
pecially the π-electrons in benzene are given and applied.
The magnetic properties of benzene due to ring-current
effects are evaluated.

In the last part of this section, we exhibit a system with
a hysteresis loop in the magnetization with respect to the
external field. The hysteresis loop is centered around the
external field value of half a flux quantum in the ring.
The system is a half-filled four-site Hubbard ring. The
phenomenon of the hysteresis loop is not restricted to this
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system; it should be found in any system with a negative
Drude weight. Apart from half-filled Hubbard rings, rings
of noninteracting electrons with a band structure that can-
not be approximated by a straight line around the Fermi
points can possess a negative Drude weight. In a system
with a negative Drude weight and six lattice sites, the hys-
teresis loop would be centered around zero external flux.
Thus there would exist a spontaneous orbital magnetic
moment without external magnetic field.

3.1 Realistic parameters

The work of Castleton, Bursill, and Barford [24,25] makes
it seem reasonable to choose the parameters of the PPP
model for benzene as follows:

t = 2.64 eV, U = 8.9 eV, εr = 1.28. (45)

This means that the on-site interaction U between elec-
trons is actually strong, of the order of the bandwidth,
so that non-perturbative methods (like the ones we use
in this paper) must be used. We estimate the inductivity
of a molecule as follows. If we take a look at the induc-
tivity of a non-ferromagnetic classical conducting ring in
vacuum of the size of a benzene molecule, we find that the
inductivity

L = µ0R

{
1
4

+
[
ln

(
8R
r

)
− 2

]}
(46)

will be very small. The radius of the ring R in the above
equation is about 140 pm. If the radius r of the conduc-
tor itself were about R/5, the inductivity would be about
L ≈ 0.02/eV in natural units. However, the inductivity
is a phenomenological parameter that has to be fitted to
experiments. We try a large range of inductivities to show
what kind of effects might arise because of the inductivity
of a molecule or a ring of coupled quantum dots.

3.2 Benzene

The magnetic susceptibility of aromatic compounds is
anisotropic. In benzene, the diamagnetic susceptibility
perpendicular to the molecular plane (χmol

⊥ = −119 ×
10−11 m3 mol−1) is about three times larger than the dia-
magnetic susceptibility parallel to the molecular plane
(χmol

‖ = −43.8×10−11 m3 mol−1) [31]. With the proposed
model, the total magnetic susceptibility cannot accurately
be described because the influence of the core electrons is
neglected. Moreover, the π-electrons are not able to move
perpendicular to the plane of the molecule. Therefore, the
orbital magnetic susceptibility in the plane of the benzene
molecules is zero within our model. However, the part of
the magnetic susceptibility that stems from the delocal-
ization of the π-electrons — and this is the part that is
important to determine the degree of aromaticity — is
extracted.
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Fig. 3. Current as a function of the magnetic flux for the PPP
model on 6 sites with 3 up and 3 down electrons, t = 2.64 eV,
U = 8.9 eV, εr = 1.28, T = 0.025 eV, L = 0.0, 0.05/eV, 0.1/eV
was used to model benzene.

If only the ring-current effect in benzene were
anisotropic, the magnetic susceptibility anisotropy,

∆χmol ≡ χmol
⊥ − χmol

‖
= 75.2 × 10−11 m3 mol−1, (47)

would be a good number to test the model. But accord-
ing to Pople, the ring current effect makes up only 30%
of the anisotropy [32,33]. The rest is caused by van Vleck
paramagnetism. Other calculations have produced differ-
ent results [34]. The van Vleck paramagnetism is a local
contribution that can be captured by incremental schemes
that ascribe a certain amount of the total magnetic sus-
ceptibility to every atom or bond in the molecule.

This observation has led to the definition of the mag-
netic susceptibility exaltation as the difference between
the measured susceptibility (averaged over all orientations
of the molecule) and the susceptibility calculated from in-
cremental schemes:

Λ ≡ χ̄mol −
(∑

χmol
atom,i + nχmol

C=C

)
. (48)

Another method to determine the magnetic susceptibility
exaltation is to take the difference between the measured
magnetic susceptibility of the aromatic molecule and the
susceptibility of molecules built from the same atoms but
without cyclic delocalization. The magnetic susceptibil-
ity exaltation should therefore be a good measure for the
delocalization of electrons in a molecule. In current mag-
netochemistry textbooks, the value

Λ = −17.2× 10−11 m3 mol−1 = −13.7 ppmcgs (49)

is found for the ring-current contribution to the total sus-
ceptibility in benzene [31]. This value stems from the ar-
ticles of Dauben [11,12]. It was calculated using the in-
cremental schemes that were developed by Haberditzl,
Pacault, and Hoarau. We compare it in the following with
the susceptibility of our model.

The response current of benzene to an externally ap-
plied Aharonov-Bohm flux would look like that displayed
in Figure 3. The data was obtained with the parameters in
equation (45) and including the electron-electron interac-
tion according to the Ohno potential in equation (4). The
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Fig. 4. The free energy as a function of the magnetic flux for
the system shown in Figure 3.

diamagnetic response of benzene and the shape of the free
energy in Figure 4 is reminiscent of superconducting rings
with a conventional junction. The existence of a large al-
most linear regime around zero flux clarifies why linear
approximations were so successful in explaining the mag-
netic response. The critical inductivity is (t = 2.64 eV)

Lc =
9
2t

≈ 1.70455/eV. (50)

Since this inductivity is very high, we expect the effect
of the inductivity to be rather small in benzene rings.
The slope of the curves at zero magnetic flux was deter-
mined as jL=0(φext) = − 1.73 eV

π φext, j L=0.05/eV (φext) =
− 1.68 eV

π φext, j L=0.1/eV (φext) = − 1.63 eV
π φext. It should be

noted that the plots are not intended to be representative
of the real ring current in benzene over the whole range of
flux shown in the figures. This would only be true if it were
possible to create a thin flux tube threading the molecule.
In that case, the anomalous Zeeman effect for the quan-
tum ring would be rigorously zero, in accordance with our
model. On the other hand, in a homogeneous magnetic
field the Zeeman interaction of the electron spins with the
magnetic field would be relevant; for a detailed compar-
ison with experiment it needs to be added to the model
Hamiltonian (10). However, even in this case, the spins are
not polarized in the benzene molecule if the homogeneous
field is sufficiently small, so that our results can still be
used to extract the ring-current effect and compare this
to experiment.

The molar magnetic susceptibility

χmol ≡ χ

ρ
Mr, (51)

is the magnetic susceptibility divided by the density of
the material and multiplied by the molecular weight. In
the framework of the model proposed above, the magnetic
susceptibility is equal to the magnetic susceptibility exal-
tation

Λ = χ̄mol =
µ0

3
jA2

φext
. (52)

With the values of j
φext

≈ − 1.73 eV
π and A = 3

√
3

2 (140 pm)2

we obtain

Λ = −13.3× 10−11 m3 mol−1, (53)
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Fig. 5. Current for the Hubbard model on 4 sites with 2 up
and 2 down electrons, t = 2.64 eV, U = 8.9 eV, Vlm = 0,
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which agrees reasonably well with the value that was cited
above [see Eq. (49)].

3.3 Systems with negative Drude weight

Systems with a negative Drude weight were first found
by Stafford [22] and Fye [26]. These systems are finite,
half-filled Hubbard rings with a multiple of 4 lattice
sites. As the ring reaches the thermodynamic limit, the
Drude weight becomes positive semidefinite. These rings
are paramagnetic and correspond to [4n] annulenes. The
negative Drude weight is related to the paramagnetism of
these substances. However, we cannot expect to capture
every property of the [4n] annulenes with the simple Hub-
bard model. Bond length alternation and the long-range
Coulomb interaction counteract such an oversimplified de-
scription.

In this section we simply examine the new physical
features that emerge from the proposed model. There can
be states with a permanent orbital magnetic moment for
these systems if the inductivity is tuned to values above
the critical inductivity. We have calculated a hysteresis
loop centered around half a flux quantum of the exter-
nal field. There are two current states reached by entering
the hysteresis loop from above or below. This is shown
in Figure 5. For small fields and small inductivities, the
response is paramagnetic, and the overall characteristics
are reminiscent of a π-SQUID, although for large induc-
tivities, the response current of the 4-site system differs
from that of a π-SQUID. The magnitude of the current
becomes smaller for larger inductivities. The critical in-
ductivity is (t = 2.64 eV)

Lc =
2
√

2
t

≈ 1.07137/eV. (54)

States with a permanent orbital magnetic moment occur
above the critical inductivity. They evolve around half a
flux quantum. The free energy at T = 0.01 eV is plotted
in Figure 6. The current in a ring that is exposed to a
magnetic field is the negative first derivative of the free
energy with respect to the external flux.
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Although the electron interaction plays a subordinate
role in the iterative scheme for the fixed point of the cur-
rent operator, it is important for the occurrence of a per-
manent orbital magnetic moment in the 4-site system. We
can ask which energy eigenstate of the noninteracting sys-
tem is the first to cross from a single minimum with re-
spect to the corresponding eigenvalue of the current op-
erator to two minima. For the noninteracting system, the
eigenenergies are

Hκ = 2 Re
[
e−

i
N L jκ

C κ
]

+
1
2
L(jκ)2. (55)

Most of all, we are interested in the properties of the state
that crosses first from one minimum to two minima as the
inductivity is increased (see Fig. 7). The crossover takes
place at Lc. This state has to be the state that produces
the highest amplitude of the exponential term in equa-
tion (55). Occupying the single particle states −π

2 and
π in momentum space with two electrons each yields the
highest real part of the hopping operator in equation (55).
Let us call this state |ψ〉. The state |ψ〉 is the state with
the highest energy for the noninteracting system. Hence
we expect the expectation value of the current at low tem-
peratures not to exhibit a spontaneous orbital magnetic
moment. The interaction of the electrons plays a vital
role in mixing the state |ψ〉 with the ground state and
thus adding a spontaneous orbital magnetic moment to
the ground state (see Fig. 8). The hysteresis loop of the
spontaneous orbital magnetic moment is seen to evolve for
high interaction strengths. There is no hysteresis for the
noninteracting system.

4 Conclusion

Based upon a model for superconducting rings with a con-
ventional or a π-junction, we have presented a model and
a nonperturbative solution scheme for one-dimensional
strongly correlated electronic rings in magnetic fields. The
model includes a feedback term through which the current
in the ring can generate magnetic flux. Current and gener-
ated magnetic flux are coupled linearly by an inductivity.
The energy of the generated magnetic field is quadratic
in the current. An iterative scheme for the solution of the
model has been developed.
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Fig. 7. The eigenenergies for the noninteracting model on four
lattice sites with two up and two down electrons with respect
to the corresponding eigenvalues of the current operator. The
state with the highest energy is nondegenerate and crosses first
from one to two minima. The inductivity chosen for the graph
is L = 1.5 eV (U = 0, all other parameters taken from Fig. 5).
The eigenvalues of the current operator will be adjusted by the
fixed-point method so as to minimize the eigenenergies.
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Fig. 8. The expectation value of the current at T = 0.01 eV for
the Hubbard model on four lattice sites with two up and two
down electrons. The inductivity is held constant at L = 1.5 eV.
The on-site interaction varies from U = 0 eV to U = 10 eV in
steps of 2 eV.

We have shown an example system with negative
Drude weight that is paramagnetic within the framework
of this solution. The paramagnetism of antiaromatic sub-
stances can thus be explained. A state with a permanent
orbital magnetic moment has been found for high induc-
tivities. This is a state where at zero external field there is
a persistent current flowing through the ring, generating
a magnetic moment. It is not clear whether the critical
inductivities we estimated can be reached in molecules;
however, it should be possible to tune the inductivity of a
ring of coupled quantum dots to the desired values.

Systems with a positive Drude weight exhibit diamag-
netism. These systems are, e.g., aromatic hydrocarbons.
They are comparable to superconducting rings with one
conventional junction.

The ring-current effect contributes to the anisotropy of
the magnetic susceptibility in benzene. It has been found
that the inductivity of a benzene ring should be almost
negligible due to the extremely small diameter (240 pm)
of the molecule. However, for an exact determination of
the inductivity of the π-system of benzene, the part of
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the anisotropy of the magnetic susceptibility that is in-
duced by ring currents would have to be clearly separated
from the part of the anisotropy that stems from Van Vleck
paramagnetism.

The proposed model has been applied to extract the
ring-current contribution to the magnetic susceptibility in
benzene. It should be possible to apply this method to
other substances and thus establish a theoretical criterion
for aromaticity. The advantage over the theoretical pre-
dictions of aromaticity from DFT calculations is the full
consideration of the Coulomb interaction.

In closing, we reemphasize that our model
Hamiltonian (10), despite its foundation on sound
physical arguments and the analogy to superconducting
rings, is semi-phenomenological in nature and not fully
microscopic. Clearly, a microscopic justification of the
model (10) would be both interesting and very valuable.
One possible way to proceed would be to start from a
microscopic action for charged matter, coupled to the
radiation field, integrate out the electromagnetic field
(with the exception of the external flux), and derive an
effective action for interacting charges and currents in an
external flux. This would be very much in the spirit of
Loss’s work [35,36], with one crucial difference, since one
has to keep the ring finite and cannot make a Luttinger
liquid assumption. A microscopic foundation of our model
along these lines would clearly be a highly non-trivial
undertaking and has to be set aside at this stage for
future research.
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